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Letters

Comments on “Attenuation Characteristics of Hollow

Conducting Elliptical Waveguides”

G. FALCIASECCA, C. G. SOMEDA, AND F. VALDONI

In the above paper, 1 attenuation constants for several modes of a
metal elliptical waveguide are computed by means of two basic

formulas [footnote one, eqs. (1) and (4)]. These expressions do not
coincide with those that Chu obtained long ago [1 ]. Several numerical
discrepancies are pointed out.1

As Kretzschmar states, the standard first-order powerloss method
for the attenuation in metal waveguides is very well known. As the

partial steps are not reported in Kretzchmar’s paper, it has to be
inferred from the above-mentioned equations that the following
quantity has been used as the real part of the wall impedance:

R = (q#/u) 1/2 (1)

Re@ly2 by Jan G. Kretzschmar8

The only, but important, difference between Chu’s formulas [1]

and the ones given in [2] is obvious when the former are rewritten
under the following normalized form.

For even TM modes:
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For even TE modes:

where ~ is the frequency, ~ is the permittivity, and u is the dc con-

ductivity.
It is very well known that (1) holds in planar geometry and is also

applicable to circular waveguides. It seems that the above-mentioned
equations have been obtained by analogy with these cases.

A recent paper [2], which was published shortly after the date of
Kretzschmar’s original manuscript, follows a different path. The

wave equation is solved for radial propagation in elliptical coordi-
nates; then, as usual, the displacement current is neglected compared
with the conduction current. Thus a longitudinal wall impedance

Z, = (1 + j) Rhr,/b (2)

and a transverse wall impedance

2, = (1 + j) Rb/hr (3)

are obtained, where 2b is the minor axial length in the cross section of

the elliptical waveguide and ?zr is the first metric coefficient in the

elliptical coordinate frame, evaluated on the metal wall. The details
of the derivation are contained in [2].

From (2) and (3) one gets back to (1) if and only if the ellipse is
indeed a circle, because then lzr = b. On the other hand, when the com-
plete expressions (2) and (3) are introduced in the standard power-

10SSmethod, or in another first-order perturbation approach [3], then
Chu’s formulas [1] are obtained. Note that their original derivation
had been performed by matching the fields on the elliptical bound-
aries.

Despite the little amount of experimental work that we are aware

of, we trust Chu’s formulas as being better grounded than those used
by Kretzschmar. Therefore, we suggest that the very appreciable
numerical evaluation< of normalized attenuation charts, done in
Kretzchmar’s paper, be extended to those formulas and practical

consequences of the different approach be pointed out.
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It is now clear that the factor th & = <l –ez in these equations

replaces the factor <1 — ez COS2~ in the corresponding formulas in

[2]. This is due to the fact that the wall impedance has been taken

equal to (mPf/u)1)2,as was pointed out by Falciasecca et al. A com-

parative study of both sets of formulas is indeed very interesting, and
I hope to present the first results in the near future. Meanwhile, I

would like to point out that it is not shown in [3] how the fields inside
the elliptical waveguide and the fields in the metal wall can be
matched at the boundary f = fo. Another interesting problem is the

accuracy of the asymptotic formulas for the modified Mathieu of the
fourth kind and the approximations for their first derivative.
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Focusing of 104-GHz Beams by

Cylindrical Mirrors

J. T. RUSCIO

The use of cylindrical mirrors to focus 52-GHz beams over a 85-

m-long path has been previously reported [1 ]. We shall report in
this letter the results of tests made at 52 and 104 GHz over an ex-
tended 350-m-long path incorporating 10 refocuses (20 mirrors).
The arrangement is shown in Fig. 1.

The round-trip loss measured in clear weather is 2.3 dB at 52
GHz and 1.0 dB at 104 GHz. These losses are exclusive of the launch-
ing and collecting-dish losses, the Mylar-window losses, and the ab-
sorption by the oxygen line of the atmosphere. The lower 10s8 ob-
served at 104 GHz can be accounted for by a reduced spillover at the
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Fig. 1. Outline of the experimental path setup at Crawford HiIl. Holmdel, N. J.
This path incorporates 10 focusers. The dots along the broken line indicate mirror
locations,
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Fig. 2. Thetopcurve gives the measured total round-trip attenuatiorl in decibels
as a function of frequency. The lower curve is the sum of the attenuation mea-
sured when the launcher and collector face each other (1.8 dB at 104 GHz), the
Mylar window loss (0,2 dB), and the attenuation by the atmospheric oxygen
(0.23 dB at 104 GHz).

mirror edges and the fact that smaller portions of the cylindrical
mirrors are used at the higher frequency (degradations resulting
from the lack of uniformity in mirror curvature are lessened if the

beam size is reduced). When going from 52 to 104 GHz the only
changes that need to be made are substitution of new feeds and
optimization ‘of the curvature of the cylindrical mirrors. The same
launching and collecting dishes, made of spun aluminum, are used at

both frequencies.
The variation of the measured round-trip loss as a function of fre-

quency is shown in Fig. 2. This figure shows that the loss does not

exceed 1.6 dB over a 10-percent bandwidth centered at 104 GHz.
Tkis loss is significantly higher than the theoretical ohmic loss

(~O.ldB). Yetitis negligibly small compared with losswresulting
from heavy rains. To determine the losses due to the mirror surfaces
being wet, a mirror was thoroughly sprayed with water. The attenua-
tion increases by 0.1 dB. Recovery occurs30s after the termination
of the spraying under average wind conditions.

The variations in transmission due to wind are of the order of 0.2

dB for 8-16-km/h winds and 0.5 dB for 2&32-km/h winds. Gusts of

S.5-km/h winds can produce 2-dB variations.

Slow daily variations, not exceeding 3 dB, are observed at 52 and

104 GHz; they are attributed to thermal changes resulting in de-
formations of the supporting structures (made of steel pipes).

In conclusion, we have shown that commercial (l-m by l-m)
glass mirrors can be used for guiding and directing 104-GHz beams
with little losses.
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Fast Parameters Calculation of the Dielectric-

Supported Air-Strip Transmission Line

EUGENIO COSTAMAGNA

The method presented by Smith in [1] for the evaluation of the

fringing capacitances in microstrip and suspended substrate struc-

tures is very useful in analysis and optimization problems and per-
mits fast and accurate calculations.

We have applied the method to the structures, with electric or
magnetic side walls, shown in Fig. 1, which differ from those consid-

ered in [1] because at the bottom a magnetic wall instead of an elec-
tric one is assumed.

The fast calculation of these structures is of great interest and

includes as a particular case (gl = O) the analysis of the dielectric-

supported air-strip transmission line in Fig. 2.
In his paper [1] Smith expresses the capacitance of the line as a

slowly converging series. Convergence is obtained by subtracting
from it, term by term, a second series representing the capacitance
(Smith’s CT) in a convenient structure, in which the charge distri-

bution (Smith’s p(x)) is similar and can be readily found together
with the capacitance from conformal mappings.

In our case, a convenient series expression for the capacitance and

a trial function for the charge distribution are obtained from the
structure with homogeneous dielectric in Fig. 3. The capacitance and

the charge distribution for this geometry can be found from Smith’s
conformal mappings applied to the new geometry in Fig. 4.

This is because Green’s functions for the geometry in Fig. 3 and

the geometry in Fig. 4 (which differs from that introduced by Smith
for the geometrical dimensions only), calculated on the center con-

ductor, are identical, as will be shown in tbe following paragraph.
In the case of electric side walls, with homogeneous dielectric, it

is sufficient to compare Green’s functions for a half section in Fig. 3
[2] and for a half section in Fig. 4 [3]. For the first half section, with

the notation introduced in [2], we have:

Go =
2
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and for the second half section:

The two expressions, as seen by inspection, coincide, and a variational
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